Monotone Linkage Clustering and Quasi-Convex Set Functions

نویسندگان

  • Yulia Kempner
  • Boris Mirkin
چکیده

Greedily seriating objects one by one is implicitly employed in many heuristic clustering procedures, which can be described in terms of a linkage function measuring entity-to-set dissimilarities. A well-known clustering technique, single linkage clustering, can be considered as an example of the seriation procedures (actually, based on the minimum spanning tree construction) leading to the global maximum of a corresponding `minimum split' set function. The purpose of this work is to extend this property to a wide class of the so-called monotone linkages. It is shown that the minimumsplit functions of the monotone linkages can be greedily maximized. Moreover, this class of set functions is proven to coincide with the class of so-called quasi-convex set functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-concave functions on antimatroids

In this paper we consider quasi-concave set functions defined on antimatroids. There are many equivalent axiomatizations of antimatroids, that may be separated into two categories: antimatroids defined as set systems and antimatroids defined as languages. An algorthmic characterization of antimatroids, that considers them as set systems, was given in [4]. This characterization is based on the i...

متن کامل

Quasi-concave functions on meet-semilattices

This paper deals with maximization of set f'unctions delined as minimum values of monotone linkage functions. In previous research, it has been shown that such a set function can be maximized by a greedy type algorithm over a family of all subsets of a finite set. ln this paper, we extend this finding to meet-semilattices. We show that the class of functions defined as minimum values of monoton...

متن کامل

Duality between quasi-concave functions and monotone linkage functions

A function F defined on all subsets of a finite ground set E is quasiconcave if F (X∪Y ) ≥ min{F (X), F (Y )} for all X, Y ⊂ E. Quasi-concave functions arise in many fields of mathematics and computer science such as social choice, theory of graph, data mining, clustering and other fields. The maximization of quasi-concave function takes, in general, exponential time. However, if a quasi-concav...

متن کامل

Quasi-Concave Functions and Greedy Algorithms

Many combinatorial optimization problems can be formulated as: for a given set system over E (i.e., for a pair (E, ) where ⊆ 2E is a family of feasible subsets of finite set E), and for a given function F : →R, find an element of for which the value of the function F is minimum or maximum. In general, this optimization problem is NP-hard, but for some specific functions and set systems the prob...

متن کامل

Quasi-convex Functions and Quasi-monotone Operators

The notions of a quasi-monotone operator and of a cyclically quasi-monotone operator are introduced, and relations between such operators and quasi-convex functions are established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997